

2-Mbit (128K x 16) Static RAM

Features

• Temperature Ranges

- Industrial: -40°C to 85°C

- Automotive-A: -40°C to 85°C

- Automotive-E: -40°C to 125°C

• High speed: 55 ns

Wide voltage range: 2.7V–3.6V

· Ultra-low active, standby power

• Easy memory expansion with CE and OE features

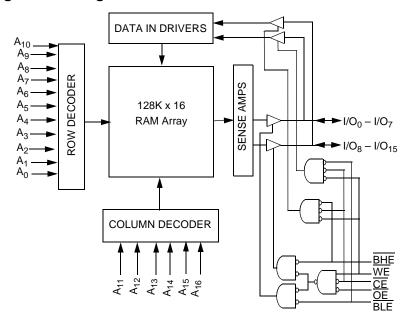
· TTL-compatible inputs and outputs

· Automatic power-down when deselected

CMOS for optimum speed/power

 Available in standard Pb-free 44-pin TSOP Type II, Pb-free and non Pb-free 48-ball FBGA packages

Functional Description[1]


The CY62136VN is a high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in

portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected ($\overline{\text{CE}}$ HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), BHE and BLE are disabled ($\overline{\text{BHE}}$, BLE HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

<u>Writing</u> to the device is <u>acc</u>omplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0$ through I/O₇), is written into the location specified <u>on the</u> address pins $(A_0$ through A_{16}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(I/O_8$ through $I/O_{15})$ is written into the location specified on the address pins $(A_0$ through $A_{16})$.

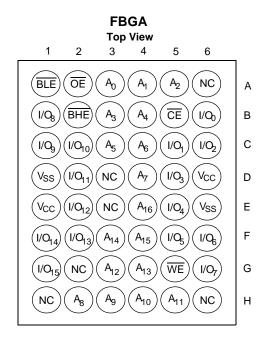
Reading from the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the <u>address</u> pins will appear on I/O₀ to I/O₇. If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table at the back of this data sheet for a complete description of read and write modes.

Logic Block Diagram

PinConfigurations^[3] TSOP II (Forward)

		Top View	,
I/O ₁ I/O ₂ I/O ₃ V _{CC} V _{SS} I/O ₄	1 1 2 2 3 3 4 4 5 6 6 7 8 8 9 10 11 11 12 13 13 14 14 15 16 16 17 18 19 20 20 21 22 22	44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23	A 5 A 6 A 7 DE II

Note:


1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Product Portfolio

						Power Dissipation			
	V	V _{CC} Range (V)				Operatin	ıg, I _{CC} (mA)	Standby, I _{SB2} (µA	
Product	Min	Typ. ^[2]	Max	Speed	Ranges	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62136VNLL	2.7	3.0	3.6	55	Industrial	7	20	1	15
				55	Automotive-A	7	20	1	15
				70	Industrial	7	15	1	15
				70	Automotive-A	7	15	1	15
				70	Automotive-E	7	20	1	20

Pin Configurations^[3]

^{2.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.

3. NC pins are not connected on the die.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage to Ground Potential -0.5V to +4.6V DC Voltage Applied to Outputs in High-Z State $^{[4]}$ -0.5V to V $_{\rm CC}$ + 0.5V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	V _{CC}	
Industrial	−40°C to +85°C	2.7V to
Automotive-A	-40°C to +85°C	3.6V
Automotive-E	-40°C to +125°C	

Electrical Characteristics Over the Operating Range

DC Input Voltage^[4].....-0.5V to V_{CC} + 0.5V

						-55			-70		
Parameter	Description	Те	Test Conditions			Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = 2.7$	$I_{CC} = 2.7 \text{V}, I_{OH} = -1.0 \text{ mA}$					2.4			V
V _{OL}	Output LOW Voltage	$V_{CC} = 2.7$	/, I _{OL} = 2.1 m	A			0.4			0.4	V
V _{IH}	Input HIGH Voltage	$V_{CC} = 3.6$	I		2.2		V _{CC} + 0.5V	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage	V _{CC} = 2.7	/		-0.5		0.8	-0.5		0.8	V
I _{IX}	Input Leakage	GND ≤ V _I	< V _{CC}	Ind'I	-1		+1	-1		+1	μА
	Current			Auto-A	-1		+1	-1		+1	μА
		Aı		Auto-E				-10		+10	μА
I _{OZ}	Output Leakage			Ind'I	-1		+1	-1		+1	μА
	Current			Auto-A	-1		+1	-1		+1	μА
				Auto-E				-10		+10	μА
I _{CC}	V _{CC} Operating	$f = f_{MAX}$	$V_{CC} = 3.6V,$	Ind'l		7	20		7	15	mA
	Supply Current	= 1/t _{RC}	I _{OUT} = 0 mA, CMOS	Auto-A		7	20		7	15	
	Curron		Levels	Auto-E					7	20	
		f = 1 MHz		Ind'l		1	2		1	2	mA
				Auto-A		1	2		1	2	1
				Auto-E					1	2	1
I _{SB1}	Automatic CE	CE ≥ V _{CC}	- 0.3V,	Ind'l			100			100	μА
	Power-down Current—	$V_{IN} \ge V_{CC}$ $V_{IN} \le 0.3V$	$-0.3V$ or $f = f_{MAX}$	Auto-A			100			100	μА
	CMOS Inputs	1 IN <u>3</u> 0.0 1	, · — ·IVIAX	Auto-E						100	μА
I _{SB2}	Automatic CE	CE ≥ V _{CC}	- 0.3V	Ind'l		1	15		1	15	μА
	Power-down Current—	$\overline{CE} \ge V_{CC}$ $V_{IN} \ge V_{CC}$ $V_{IN} \le 0.3V$	– 0.3V or . f = 0	Auto-A		1	15		1	15	1
	CMOS Inputs	110 = 0.00	$V_{\text{IN}} \leq 0.3 \text{ V}, \text{ I} = 0$ A						1	20	1

Capacitance^[6]

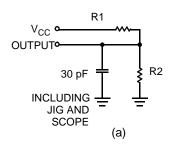
Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

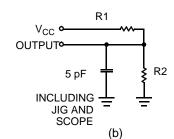
Notes:

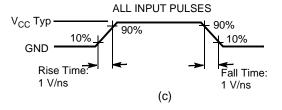
Notes.

4. V_{IL}(min) = -2.0V for pulse durations less than 20 ns.

5. T_A is the "Instant-On" case temperature.


6. Tested initially and after any design or process changes that may affect these parameters.

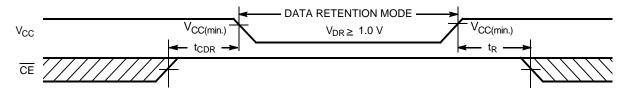



Thermal Resistance^[6]

Parameter	Description Test Conditions		TSOPII	FBGA	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	60	55	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case)		22	16	°C/W

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT



Parameters	Value	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ^[9]	Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.0			V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.0V, \overline{CE} \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V,$		0.5	7.5	μА
t _{CDR} ^[6]	Chip Deselect to Data Retention Time		0			ns
t _R ^[7]	Operation Recovery Time		70			ns

Data Retention Waveform

- Note:
 7. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100$ ms or stable at $V_{CC(min)} \ge 100$ ms.
 8. No input may exceed $V_{CC} + 0.3V$

Switching Characteristics Over the Operating Range [9]

		55	ī ns	70) ns	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle	-	1		I		
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low-Z ^[10]	5		5		ns
t _{HZOE}	OE HIGH to High-Z ^[10, 11]		25		25	ns
t _{LZCE}	CE LOW to Low-Z ^[10]	10		10		ns
t _{HZCE}	CE HIGH to High-Z ^[10, 11]		25		25	ns
t _{PU}	CE LOW to Power-up	0		0		ns
t _{PD}	CE HIGH to Power-down		55		70	ns
t _{DBE}	BLE / BHE LOW to Data Valid		25		35	ns
t _{LZBE}	BLE / BHE LOW to Low-Z ^[10, 11]	5		5		ns
t _{HZBE}	BLE / BHE HIGH to High-Z ^[12]		25		25	ns
Write Cycle ^[12, 13]		1		I		
t_{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	45		60		ns
t _{AW}	Address Set-up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{BW}	BLE / BHE LOW to Write End	50		60		ns
t _{SD}	Data Set-up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High-Z ^[10, 11]		20		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[10]	5		10		ns

Notes:

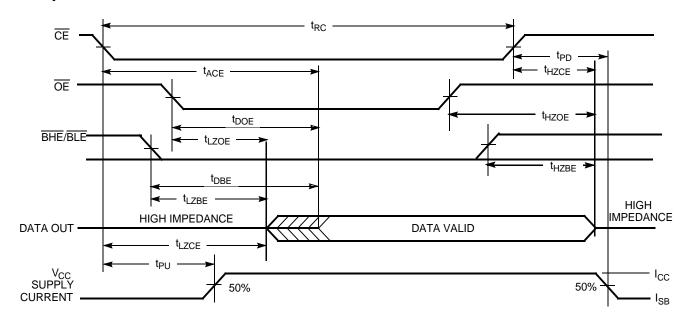
^{9.} Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified l_{OL}/l_{OH} and 30-pF load capacitance.

10. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

11. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of A<u>C</u> Test Loads. Transition is measured ±500 mV from steady-state voltage.


12. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

13. The minimum write cycle time for write cycle 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.



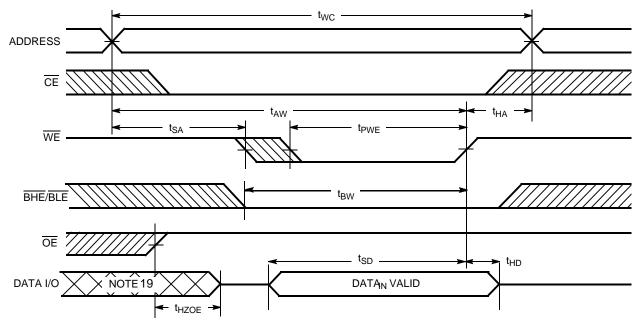
Switching Waveforms

Read Cycle No. 1^[14, 15]

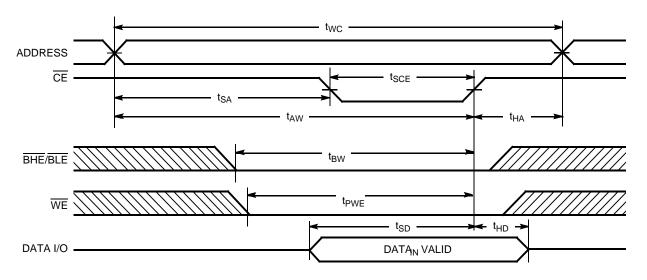
Read Cycle No. 2^[15, 16]

- Notes:

 14. <u>Dev</u>ice is continuously selected. \overline{OE} , $\overline{CE} = V_{|L}$.


 15. \overline{WE} is HIGH for read cycle.

 16. Address valid prior to or coincident with \overline{CE} transition LOW.

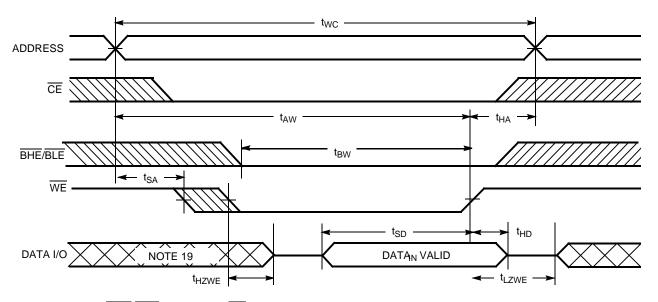


Switching Waveforms (continued)

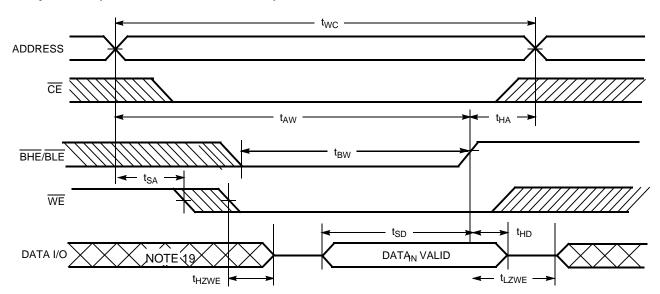
Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) $^{[12, 17, 18]}$

Write Cycle No. 2 (CE Controlled)[12, 17, 18]

17. Data I/O is high impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$.

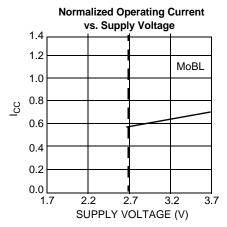

18. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

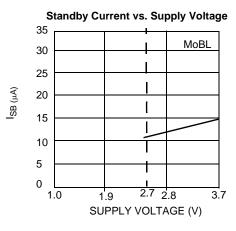
19. During this period, the I/Os are in output state and input signals should not be applied.

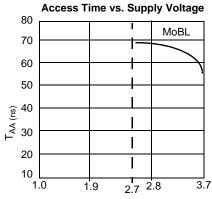


Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)[13, 18]




Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[19]



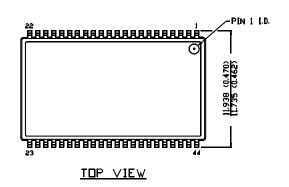
Typical DC and AC Characteristics

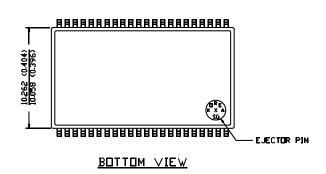
SUPPLY VOLTAGE (V)

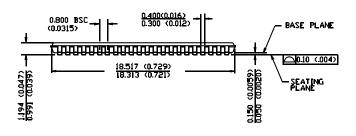
Truth Table

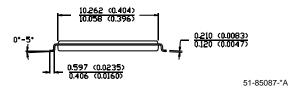
CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Read	Active (I _{CC})
L	Н	L	Н	Н	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	L	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	Η	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Write	Active (I _{CC})

Ordering Information

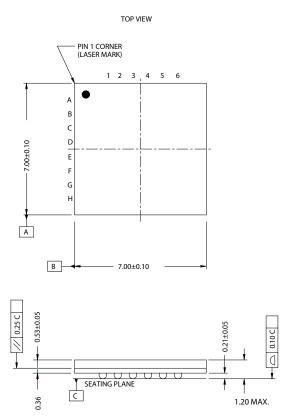

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62136VNLL-55ZXI	51-85087	44-pin TSOP II (Pb-Free)	Industrial
	CY62136VNLL-55BAI	51-85096	48-Ball (7.00 mm x 7.00 mm) FBGA	
	CY62136VNLL-55ZSXA	51-85087	44-pin TSOP II (Pb-Free)	Automotive-A
70	CY62136VNLL-70ZXI	51-85087	44-pin TSOP II (Pb-Free)	Industrial
	CY62136VNLL-70BAI	51-85096	48-Ball (7.00 mm x 7.00 mm) FBGA	
	CY62136VNLL-70BAXA	51-85096	48-Ball (7.00 mm x 7.00 mm) FBGA (Pb-Free)	Automotive-A
	CY62136VNLL-70ZSXA	51-85087	44-pin TSOP II (Pb-Free)	
	CY62136VNLL-70ZSXE	51-85087	44-pin TSOP II (Pb-Free)	Automotive-E

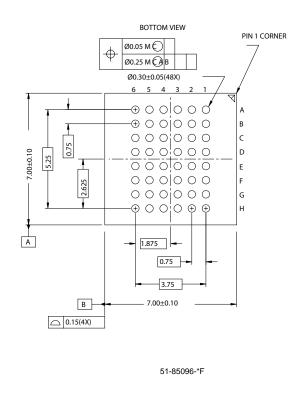

Please contact your local Cypress sales representative for availability of these parts


Package Diagrams


44-pin TSOP II (51-85087)

DIMENSION IN MM (INCH) MAX MIN.





Package Diagrams (continued)

48-Ball (7.00 mm x 7.00 mm) FBGA (51-85096)

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the products of their respective holders.

Document History Page

Document Title: CY62136VN MoBL [®] 2-Mbit (128K x 16) Static RAM Document Number: 001-06510				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	426503	See ECN	RXU	New Data Sheet
*A	488954	See ECN	NXR	Added Automotive product Updated ordering Information table